
RELookup: Providing Resilient and Efficient Lookup Service for P2P-VoD

Streaming

Xu Zhang 1, Zhenhua Li 2, Tieying Zhang 3, Liangpeng He 1, and Guihai Chen 1

1 Nanjing University, Nanjing, China 2 Peking University, Beijing, China
3 ICT, Chinese Academy of Sciences, Beijing, China

zxyecn@126.com, lzh@net.pku.edu.cn, gchen@nju.edu.cn

Abstract

For P2P-VoD streaming, an effective lookup algorithm

for appropriate data suppliers is required to support the

user’s operation of random jump on the video. Existing

lookup algorithms mainly adopt a centralized, flooding-

based, or DHT-based method. Facing the highly dynamic

Internet environments, the centralized method incurs a

single point of failure, the flooding-based method lacks

scalability, and the DHT-based method is not resilient.

Motivated by these problems, we propose a novel lookup

algorithm, named “RELookup”, which places peers on a

resilient super node-based overlay and meanwhile utilizes

the play point distance to efficiently locate candidate data

suppliers. Besides, deliberate measures (i.e., special design

of message format and node state) have been taken to

reduce the coordination costs between super nodes to

very little. Results of trace-driven simulations confirm the

effectiveness of our proposed RELookup algorithm.

Keywords-P2P (peer-to-peer); VoD (video-on-demand);
lookup algorithm; super node; play point distance.

I. Introduction

In recent years, peer-to-peer video-on-demand (P2P

VoD) streaming [1], [2], [3], [4], [5], [6] has attracted

enormous attention from both industry and academy. As

a data intensive Internet application, P2P-VoD desperately

demands locating and accessing data effectively. Therefore,

an effective lookup algorithm for appropriate data suppliers

is required to support the user’s operation of random

jump on the video. The existing lookup algorithms mainly

adopt a centralized [1], [2], [6], flooding-based [7], [8] or

DHT-based [3], [4], [9], [10] method. Facing the highly

dynamic Internet environment, the centralized method in-

curs a single point of failure, the flooding-based method

lacks scalability because of the exponentially increasing

communication cost, and the DHT-based method is not

resilient due to the necessity of maintaining a structured

overlay [11], [12].

Motivated by these problems, in this paper we propose

a novel lookup algorithm for P2P-VoD streaming, named

“RELookup”, which places peers on a resilient super node-

based overlay and meanwhile utilizes the design of play

point distance to efficiently locate candidate data suppliers.

It is well known that organizing the peers into an unstruc-

tured (random) overlay (like Gnutella [13]) is simple, fault-

tolerant, but not scalable. Therefore, following the design

philosophy of tiered unstructured overlays (like eDonkey

[14] and KaZaa [15]), we select a moderate number of

(relatively) stable super nodes from the peers to organize

the network so as to make the system resilient and scalable.

Meanwhile, in the RELookup algorithm, super nodes

manage the index of data suppliers by utilizing the (un-

changed) play point distance [10]. Each super node main-

tains the information of data suppliers for a range of data

blocks. Peers use the (unchanged) play point distance

to locate the candidate data suppliers with the required

data blocks. Here “unchanged” means the viewers of the

same video are expected to playback continuously and

thus their play point distances do not change in most

time. The abovementioned “unchanged distance” leads to

little requirement for the state update messages between

super nodes, which significantly reduces communication

overhead. Additionally, deliberate measures (i.e., special

design of message format and node state) have been taken

to further reduce the coordination costs between super

nodes to very little. In particular, every super node executes

at most three flooding operations (at the time of join, split,

and logout) in its working life.

The results of trace-driven simulations confirm the ef-

fectiveness of our proposed RELookup algorithm. Specifi-

cally, RELookup possesses low control overhead, low jump

delay, high playback continuity, and high accuracy of node

state (i.e., global information table).

II. Related Work

The existing lookup algorithms for P2P-VoD streaming

can be generally classified into three categories: 1) central-

ized [1], [2], [6], 2) flooding-based [7], [8], and 3) DHT-

based [3], [4], [9], [10]. Obviously, the centralized method

incurs a single point of failure (i.e., the central server) and

thus is neither scalable nor resilient. Besides, the flooding-

based method lacks scalability because of the exponentially

increasing communication cost (∝ dTTL, where d is the

node degree and TTL is the number of flooding hops).

In this section, we mainly focus on the complicated DHT-

based method.

The DHT-based lookup algorithms rely on an under-

lying DHT network, where peers publish the hash value

of their sharing data to the closest peer. In the P2P-VoD

system PROP [3], when a peer gets a video block, it

publishes the information of the block to the DHT. If

another peer wants to fetch a block, it searches in the

DHT for a supplier. This approach brings two problems:

1) continuously publishing data update information brings

considerable communication overhead; 2) when a peer

moves on and discards some blocks from its buffer, it needs

to send deleting messages to update the DHT. Yiu et al.

proposed VMesh [4] which integrates three mechanisms:

scheduling, storage, and lookup. For the lookup service,

media content is divided into large segments (up to 5-

minute video), and a segment is published after completely

downloaded. However, which segment should be stored

depends on a complicated data cache and replacement

mechanism. Recently, OBN [9] introduced the idea of at-

tribute lookup. OBN considers the DHT update problem by

using the buffer relationship between peers. Nevertheless,

how to efficiently compute the play point distance between

peers is not discussed by OBN. In a word, the DHT-based

method is efficient but complicated and not resilient. In

comparison, our proposed RELookup algorithm utilizes the

design of “play point distance” to provide efficient lookup

service, and the non-DHT (super node-based) overlay is

simple and resilient.

III. System Model

By using a bootstrap server (note that almost every P2P

system requires a bootstrap server for some initialization

works like adopting newly joining nodes), super nodes

are picked out from peers and assigned with a range

of data blocks to manage. When a new super node is

picked, it gets a list of several existing super nodes from

the bootstrap server as its neighbors. Every super node

maintains a global information table which is used to index

the peers who possess corresponding data blocks. Here

the key problem is how to design the global information

2 3 4 20 21 30

B

C

D

31

E G

F

A

play point distance

super

node A

C D E F G

B

Figure 1. A super node A and its affiliated
common peers.

table for fast VoD lookup service and low communication

overhead, which will be addressed in detail in Section IV-

B.

Block. A video is segmented into multiple blocks. Each

block corresponds to a play point.

Super Node. Super node plays an important role in

RELookup by both reducing the communication overhead

and providing fast VoD lookup service. On one hand, it

acts as a common peer who just views the video; on the

other hand, it organizes its affiliated common peers (like

a “network hub”) and provides VoD lookup service for

other peers. How to select a super node from peers will

be presented in Section IV-A. Figure 1 illustrates a super

node A and its affiliated common peers (from B to G).

As a common peer, it is playing the block 3; as a super

node, it manages the index of the blocks between 20 and

30. Some common peers (from B to G) who are playing

a block between 20 and 30 are recorded by A, and they

send periodical heartbeat messages to A. These common

peers are viewed as child nodes of A.

Play point distance. As to a super node, the playing

blocks of its child nodes change over time, and the block

index of the super node changes accordingly. We use the

function F(t) to describe how the block index of a super

node changes with time. Suppose one block corresponds

to one-minute video, then a simple example of F (t) is:

F (t) =



















0, t ∈ (0, 1] minutes;

1, t ∈ (1, 2] minutes;

· · ·

n, t ∈ (n, n+ 1] minutes.

More specifically, we define the block index of a super

node as B ={b1, b2, · · · , bn}. Then B changes with time

like: B(t) = B(0) + F (t), which means for each bi ∈ B,

bi(t) = bi(0) + F (t). Obviously, if the current playing

block of a child peer is c and c ∈ B, then after t minutes,

the child peer’s playing block will be c+F (t), where c+
F (t) ∈ B(t). In Figure 1, the super node A is playing the

block 3, and is managing the index of the blocks between

20 and 30. One minute later, A will be playing block 4,

and A will manage the index of the blocks between 21

and 31.

Super Node Overlay. Super nodes are loosely orga-

nized into an unstructured and connected overlay. The

network connectivity is maintained by the bootstrap server.

In the unstructured super-node overlay, every super node

maintains a global information table to record the block

index information of other super nodes. Ideally, the global

information table should be consistent in every super

node. When a new super node is picked, it gets a list of

several existing super nodes from the bootstrap server as

its neighbors, and it uses its neighbors’ global information

tables to construct its own global information table. Each

super node periodically sends heartbeat messages to its

neighbors, where its global information table is contained

in the heartbeat message for other super nodes’ reference,

so that the global information tables of super nodes will

gradually converge to a consistent state.

IV. RELookup Design

A. Selecting Super Nodes

In RELookup, super nodes take charge of both data

block index and overlay organization. When a super node

logouts from the system or a super node decides to

alleviate its load, it has to transfer the corresponding block

index and child nodes to another super node. This process

will bring about considerable communication cost, so it is

necessary to select a highly stable peer to act as a super

node. The metric OLR (online ratio) is used to evaluate

how stable a peer is. If a peer joins and leaves the system

for n times in a period (usually 24 hours), in each online

interval (join-leave) it remains up for ti time, then OLR is

defined as: OLR =
∑

n

i=1
ti

period
.

Each peer records its online history and thus its OLR

can be easily calculated. Each time when a peer joins the

system, it uploads its latest OLR value to the bootstrap

server. When a new super node is required, the bootstrap

server selects the online peer with the highest OLR as the

new super node.

B. Flooding Avoidance and GIT

In RELookup, the GIT (global information table) is

used to lookup for candidate data suppliers of a block.

Traditionally, to maintain a GIT which can reflect the in-

time state of every super node, super nodes have to flood

state update messages continuously which incurs enormous

ip playingblock blocks split

Figure 2. Attributes of a flooding message.

communication cost. As to our proposed RELookup al-

gorithm, “play point distance” (see Section III) is com-

bined with GIT to avoid continuous flooding messages.

In particular, every super node executes at most three

flooding operations (at the time of join, split, and logout,

respectively) in its working life.

When a new super node is selected, the first message

is flooded to the system to notify its join. It contains the

super node’s block index. Since a super node’s block index

changes with time, traditional lookup algorithms have to

reflood the message and then other super nodes update

their state. As to RELookup, by using play point distance

to record the super node’s block index, super nodes do not

need to reflood such a “join” message.

The second message is flooded after a super node has

performed the split process (i.e., a super node is split

into two super nodes to manage the original block index.

Detailed description is contained in Section IV-D). This

message informs other super nodes that this super node has

been “split” and then will not accept any peer as its child

nodes. A super node usually performs the split process

at most once. The third message is the logout message

which is flooded when a super node log outs. On receiving

this message, other super nodes remove this super node’s

record from their GITs.

As in Figure 2, the flooding message just contains four

attributes: m.ip (node ip address), m.playingblock (the

playing block of the super node), m.blocks (the block

index of the super node) and m.split (the split flag of

the super node). Once a super node gets such a message, it

formats this message into its GIT. We denote an item in the

GIT as g, which has three attributes: g.ip (the ip address),

g.blocks (the block index of the super node sending this

message), and g.split (the split flag). The pseudo codes

of how a message is formatted into a GIT goes as in

Algorithm 1. Line 4 should be paid more attention to

because here play point distance is utilized to record the

block index of a super node.

Algorithm 1 Message formatting

1: g.ip = m.ip

2: g.split = m.split

3: for each block in m.blocks do

4: g.blocks = m.blocks - g.playingblock;

5: end for

6: record g in the global information table

C. Identifying the Block Index of Super
Nodes

As mentioned above, the block index of a super node

changes with time and other super nodes can be aware

of this without communication. An example below is

used to explain how this change can be aware of without

communication.

Considering a super node A whose playing block is

ba and block index is denoted by BL. The super node

A floods the message (ba, BL), and then another super

node B whose playing block is bb receives this message

and records this message in its global information table

as (A, BL− bb). After t minutes, the playing block of A

becomes ba+F (t) and the block index is BL+F (t). Under

the usual assumption that every peer possesses the same

playback rate, the playing block of B becomes bb +F (t),
and thus to get the latest block index of A, B just needs

to locally calculate (BL − bb) + (bb + F (t)).
In a real system, we can not ensure that every super

node starts a block within some pre-defined time limit. So

the record may be not accurate. However, if the search

scope is extended a little, we can still get the required

data suppliers. Suppose A enters the system at ta and gets

a block ra as its playing block, and the block index BL

is returned to it by a super node. A records it as BL− ra.

Then A floods this message and B receives it. Now the

playing block of B is rb which starts at the time tb. Since

A’s message has been flooded, B knows the block index of

A is BL and records it as BL−rb. Then at time t, the block

index BL(t) calculated by A is: ra+F (t−ta)+BL−ra =
F (t− ta)+BL, and the block index BL′(t) calculated by

B is: rb +F (t− tb) +BL− rb = F (t− tb) +BL. Using

F (t− ta)−F (t− tb) to evaluate the error, it can be easily

proved that |ta +∆t− tb| < 1 minute (suppose one block

corresponds to one-minute video). ∆t is the time delay for

the message to be transferred from A to B. As a result,

we regard it as far less than 1 minute, and then we get

|ta − tb| < 1 minute. Assuming ta > tb and tb = ta − α,

where 0 < α < 1, we have

F (t− ta)− F (t− tb) = F (t− ta)− F (t− ta + α);

If ⌊t− tb⌋ = ⌊t− ta +α⌋ (⌊x⌋ denotes the floor of x),

then F (t − ta) − F (t − ta + α) = 0; otherwise, F (t −
ta)− F (t− ta + α) = 1. Through this case we see that if

we want to find a block c ∈ BL, we just need to find the

blocks c, c− 1, c+ 1.

D. Scalability

When the scale of the P2P-VoD system grows, a super

node may find itself cannot accept any new child node.

Then, it asks the bootstrap server for splitting into two

new super nodes. The block index of each new super node

is a copy of a half of the block index of the original super

node, respectively. Then the original super node’s split flag

is set to true. At this time, we have three super nodes. Now

a newly joining peer would find that there are two super

nodes taking charge of its playing block, so it takes the

one whose split flag is false as its super node. As time

goes by, the original super node would have no child and

then logout.

When the scale of the P2P-VoD system shrinks, we have

to merge the block index of super nodes. Because each

block index changes with time, we can hardly record them.

Therefore, a super node simply leaves the system and does

nothing to its block index. Obviously, its block index will

be gradually forgotten by the system. When a new node

wants to join the system and finds that there is no super

node taking charge of its playing block, it will remind the

bootstrap server of such a block and thus the bootstrap

server will ask the super node who has the fewest child

nodes to take charge of this block.

V. Performance Evaluation

A. Methodology

Real-trace driven simulations are executed to evaluate

the performance of the RELookup algorithm. The traces

contain 30 real overlay topologies whose data was col-

lected from http://dss.clip2.com. The data contains each

nodes ID, IP, port, ping time (from a central node),

bandwidth and so on. The trace topologies scale from 100

to 10000 nodes, with an average node degree from less

than 1 to 3.5. Because the average node degree is too

small for media streaming, we add random edges into the

overlay to let every node hold M = 5 connected neighbors.

According to our simulation experience, M = 5 is usually

a good practical choice and using a larger M cannot bring

more benefit. In each simulation, we choose one real-trace

topology as the initial overlay topology, and then for every

20 ms, we add a new peer into the system to evaluate

the system scalability. Meanwhile, for every second, we

perform node churn operations by selecting 5% of the

existing peers to leave the system to evaluate the system

resilience. To simulate the fluctuation of the bandwidths

of peers, we assign a random value of bandwidth between

400 Kbps and 500 Kbps to each peer. We have performed

simulations on all the 30 real overlay topologies and

presented the results in typical system scales. Besides,

we compare the evaluation results of RELookup with the

flooding-based method, since the flooding-based method

has the most similar overlay organization as RELookup

(compared with the centralized method and the DHT-based

method).

1000 2000 3000
0

200

400

600

800

1000

1200

System scale

C
o
n
tr

o
l
o
v
e
rh

e
a
d

RELookup

flooding−based

Figure 3. Control overhead.

1000 2000 3000
0

100

200

300

400

500

600

700

System scale

J
u
m

p
 l
a
te

n
c
y
(m

s
)

RELookup

flooding−based

Figure 4. Jump delay.

1000 2000 3000
0

0.2

0.4

0.6

0.8

1

1.2

System scale

P
la

y
b
a
c
k
 c

o
n
ti
n
u
ty

RELookup

flooding−based

Figure 5. Playback continuity.

B. Metrics

• Control overhead. Control messages include the

flooding messages sent from super nodes and the

heartbeat messages between neighboring peers/super

nodes.

• Jump delay denotes how long a peer needs to find the

candidate data suppliers when the peer wants to jump

on the video.

• Playback continuity denotes the ratio of blocks that

arrive before or on the playback deadline.

• Number of super nodes. Because super nodes play an

important role in the RELookup algorithm, we record

the evolution of the number of super nodes as the

system scales. It reflects how our algorithm adapts to

the system scaling.

• Accuracy of GIT. In RELookup, the global infor-

mation table (GIT) is used to find candidate data

suppliers of a block. Thus, the accuracy of the global

information table is tightly related to the efficiency

of VoD lookup service. Specifically, the accuracy of

the global information table is defined as the ration

of accurate records over all records in the global

information table.

C. Evaluation Results

Control overhead. As shown in Figure 3, the control

overhead of RELookup is much lower than that of the

flooding-based method. In addition, we discover that the

control overhead approximately increases linearly, because

most of the control overhead is caused by periodical

heartbeat messages.

Jump delay. From Figure 4, we discover that the jump

delay of RELookup is lower than that of the flooding-

based method. As to the flooding-based method, the peer

who has sent the lookup request should wait until all

data suppliers respond, which is the main reason why the

flooding-based method takes a longer time to jump to a

0 0.5 1 1.5 2

x 10
6

0

20

40

60

80

100

Simulation time (s)

N
u
m

b
e
r

o
f
s
u
p
e
r

n
o
d
e
s

Figure 6. Number of super nodes.

new video position.

Playback continuity. We track the playback continuity

of RELookup and the flooding-based method with different

system scales, as depicted in Figure 5. Both methods can

keep the playback continuity very close to 1.0.

Number of super nodes. Figure 6 plots the evolution

of the number of super nodes in RELookup. At first, the

number of super nodes increases as the system scale grows

from 0 to 2000 because super nodes continuously split

into more super nodes during the first stage. Then the

number of super nodes gradually decreases until stable.

The decreasing results from old super nodes’ leaving the

system (Recall that old super nodes do not leave the system

instantly after they split). When old super nodes have all

left, the number of super nodes keeps stable.

Accuracy of GIT. From Figure 7, we see that the

accuracy of GIT is very high (always above 0.99). We

also discover that the accuracy curve has frequent churns

which mainly results from new super nodes’ joining or old

super nodes’ leaving the system.

VI. Conclusion

In this paper we investigate how to design an efficient

and resilient lookup algorithm for P2P-VoD streaming to

0 0.5 1 1.5 2

x 10
6

0.98

0.985

0.99

0.995

1

1.005

Simulation time (s)

A
c
c
u

ra
c
y

Figure 7. Accuracy of GIT in RELookup.

provide effective operation of random jump on the video.

After analyzing the pros and cons of the state-of-the-

art lookup algorithms including the centralized, flooding-

based, and DHT-based methods, we propose RELookup,

a novel lookup algorithm which places peers on a re-

silient super node-based overlay and meanwhile utilizes

the design of play point distance to efficiently locate

candidate data suppliers. Furthermore, deliberate measures,

i.e., special design of the message format and the node

state, have been taken to reduce the coordination costs

between super nodes to very little. The results of trace-

driven simulations confirm the effectiveness of RELookup.

Acknowledgement

The work is partly supported by the China NSF grants

(60825205, 61073152, 61021062, 61133006, 61073015)

and the China “973” grant 2011CB302305.

References

[1] Y. Guo, K. Suh, J. Kurose, and D. Towsley. “P2Cast: peer-
to-peer patching scheme for VoD service,” In WWW, 2003.

[2] T. Do, K. Hua, and M.A. Tantaoui. “P2VoD: Providing
fault tolerant video-on-demand streaming in peer-to-peer
environment,” In IEEE ICC, 2004.

[3] L. Guo, S. Chen, S. Ren, X. Chen, and S. Jiang. “PROP:
a Scalable and Reliable P2P Assisted Proxy Streaming
System,” In IEEE ICDCS, 2004.

[4] W. Yiu, X. Jin, and S. Chan. “VMesh: Distributed segment
storage for peer-to-peer interactive video streaming,” IEEE
journal on selected areas in communications, vol. 25, no.
9, 2007.

[5] Y. Huang, T. Fu, D. Chiu, J. Lui, and C. Huang. “Chal-
lenges, design and analysis of a large-scale p2p-vod sys-
tem,” In ACM SIGCOMM, 2008.

[6] X. Yang, M. Gjoka, P. Chhabra, A. Markopoulou, and P.
Rodriguez. “Kangaroo: Video seeking in P2P systems,” In
IPTPS, 2009.

[7] X. Jiang, Y. Dong, D. Xu, and B. Bhargava. “GnuStream: A
P2P Media Streaming System Prototype,” In IEEE ICME,
2003.

[8] J. Li. “PeerStreaming: A practical receiver-driven peer-to-
peer media streaming system,” MSR-TR-2004-101, 2004.

[9] C. Liao, W. Sun, C. King, and H. Hsiao. “OBN: Peering for
Finding Suppliers in P2P On-demand Streaming Systems,”
In IEEE ICPADS, 2006.

[10] T. Zhang, X. Cheng, J. Lv, Z. Li, and W. Shi. “Providing
Hierarchical Lookup Service for P2P-VoD Systems,” To
appear at ACM Transactions on Multimedia Computing,
Communications and Applications (TOMCCAP), 2011.

[11] I. Stoica, et al. “Chord: A scalable peer-to-peer lookup
service for internet applications,” In ACM SIGCOMM,
2001.

[12] B. Zhao, and et al. “Tapestry: A Resilient Global-Scale
Overlay for Service Deployment,” IEEE Journal on Selected
Areas in Communications, vol. 22, 2004, pp. 41 - 53.

[13] M. Ripeanu. “Peer-to-peer architecture case study: Gnutella
network,” In IEEE P2P, 2001.

[14] http://en.wikipedia.org/wiki/EDonkey network.

[15] http://www.kazaa.com.

